Ефективність енергетичних установок з термохімічними системами для високотехнологічних суден і морських об'єктів нафтогазовидобування

dc.contributor.advisorСербін С. І.uk_UA
dc.contributor.authorЧередніченко, О. К.
dc.contributor.authorCherednichenko, O. C.
dc.date.accessioned2021-08-31T10:31:49Z
dc.date.available2021-08-31T10:31:49Z
dc.date.issued2020
dc.descriptionЧередніченко, О. К. Ефективність енергетичних установок з термохімічними системами для високотехнологічних суден і морських об'єктів нафтогазовидобування : дис. ... д-ра техн. наук : 05.05.03 / О. К. Чередніченко ; наук. консультант С. І. Сербін ; НУК. – Миколаїв, 2020. – 382 с.uk_UA
dc.description.abstractЧередніченко О. К. Ефективність енергетичних установок з термохімічними системами для високотехнологічних суден і морських об’єктів нафтогазовидобування. – Кваліфікаційна наукова праця на правах рукопису. Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.05.03 – двигуни та енергетичні установки (Технічні науки). – Національний університет кораблебудування імені адмірала Макарова, Міністерство освіти і науки України, Миколаїв, 2020. Науково-прикладною проблемою, яка вирішується в дисертації, є підвищення ефективності використання паливних ресурсів та зменшення викидів токсичних компонентів шляхом раціональної організації перетворень енергії в термохімічних системах утилізації теплоти вторинних енергоресурсів енергетичних установок високотехнологічних суден і морських об’єктів нафтогазовидобування. Необхідність виконання вимог законодавчих актів Міжнародної морської організації (IMO) щодо зниження впливу суднової енергетики на навколишнє середовище визначає запит практики, спрямований на розробку та адаптацію енергоефективних технологій в суднову енергетику шляхом комплексного впровадження новітніх установок, визначення діапазонів їх досяжних параметрів з розробкою науково обґрунтованих перспективних схемних рішень, які забезпечують підвищення ефективності використання паливних ресурсів, мінімізацію викидів CO2 та інших шкідливих речовин в навколишнє середовище. Відповідно до запиту практики сформульована мета дослідження – підвищення ефективності суднових енергетичних установок з термохімічними системами утилізації теплоти вторинних енергоресурсів для високотехнологічних суден і морських об’єктів нафтогазовидобування. Робочою науковою гіпотезою дисертаційного дослідження є твердження, що підвищення ефективності використання енергії палива в енергетичних установках та зменшення викидів шкідливих речовин досягається паровою конверсією вуглеводневих та спиртових палив за рахунок утилізації теплоти вторинних енергоресурсів з подальшим низькоемісійним спалюванням отриманих продуктів в газотурбінних та комбінованих дизель-газотурбінних установках, а також утилізацією енергії скидної теплоти суднових малообертових дизельних двигунів термохімічним перетворенням енергії в металогідридних установках. Для поліпшення ефективності процесів перетворень енергії при термохімічній обробці палив за рахунок підводу теплоти відпрацьованих газів пропонується використовувати ідею організації термохімічної обробки вуглеводневих та спиртових палив шляхом парової конверсії при параметрах, які узгоджено з параметрами робочих процесів енергетичних установок і вторинних енергоресурсів, а також низькоемісійним спалюванням продуктів термохімічних реакцій в газотурбінних камерах згоряння з попереднім частковим перемішуванням палива і окиснювача. Об’єктом дослідження є процеси перетворення енергії в енергетичних установках при термохімічній утилізації вторинних енергоресурсів. Предметом дослідження є закономірності процесів термохімічних перетворень енергії, їх вплив на ефективність енергетичних установок для високотехнологічних суден і морських об’єктів нафтогазовидобування. Задачі наукового дослідження: 1. Аналіз тенденцій світового енергоспоживання та оцінка перспективності застосування термохімічних систем утилізації теплоти вторинних енергоресурсів в судновій енергетиці на базі узагальнення та систематизації масиву значень, які описують енергетичні установки високотехнологічних суден і морських об’єктів нафтогазовидобування. 2. Виявлення шляхом математичного і фізичного моделювання діапазону ефективного застосування перспективних палив при їх термохімічній обробці шляхом утилізації вторинних енергоресурсів енергетичних установок високотехнологічних суден і морських об’єктів нафтогазовидобування. 3. Виявлення закономірностей взаємного впливу характеристик термохімічної обробки вуглеводневих і спиртових палив та параметрів робочих процесів енергетичних установок високотехнологічних суден і морських об’єктів нафтогазовидобування. 4. Розробка науково обґрунтованих нових схемних рішень газотурбінних і комбінованих дизель-газотурбінних енергетичних установок з термохімічними системами утилізації теплоти вторинних енергоресурсів та дослідження впливу їх параметрів на енергоефективність. 5. Визначення умов ефективного спалювання продуктів термохімічної обробки палив в газотурбінних камерах згоряння з попереднім частковим перемішуванням палива з повітрям. 6. Теоретичні дослідження процесів спалювання продуктів термохімічної обробки палива в газотурбінній камері згоряння з попереднім частковим перемішуванням палива та окиснювача. 7. Визначення параметрів ефективного перетворення енергії в металогідридних утилізаційних установках сучасних та перспективних суден-газовозів. 8. Апробація положень концепції підвищення ефективності енергетичних установок високотехнологічних суден і морських об’єктів нафтогазовидобування та впровадження результатів наукових досліджень. У вступі дисертаційної роботи обґрунтовано актуальність теми, зазначено зв’язок роботи з науковими програми й темами, сформульовано об’єкт і предмет дослідження, мету та головні завдання, наведено методи дослідження, дано обґрунтування достовірності отриманих результатів і висновків, визначено наукову новизну та практичне значення отриманих результатів, відображено повноту викладення результатів у публікаціях та ступінь апробації на конференціях. У першому розділі розглянуто тенденції світового енергоспоживання, виявлено значний вплив світового флоту та морських об’єктів нафтогазовидобування на підвищення якості життя людства, проаналізовано законодавчі акти Міжнародної морської організації щодо енергоефективності суден; відзначено перспективність термохімічних утилізаційних технологій в судновій енергетиці, обґрунтована мета і здійснена постановка завдань дослідження. У другому розділі представлена методологія та обґрунтовані методи дослідження. Виявлена перспективність використання об'єктно-орієнтованих підходів при розв’язуванні задач теоретичних та експериментальних досліджень процесів в суднових енергетичних установках з термохімічною утилізацією. Запропоновано використовувати наступні ієрархічні рівні: модуль в цілому, підсистеми модуля, групи блоків обладнання підсистем, структурно-функціональні блоки, що моделюють одиничні ланки процесу, з поєднанням блоків зв’язками у вигляді матеріальних та енергетичних потоків. Представлена методологія експериментального дослідження, надано опис експериментального стенда для моделювання процесів термохімічної обробки палива при підвищеному тиску з визначенням впливу витрат механічної енергії на ефективність термохімічної утилізації та вимірюванням компонентного складу синтез-газу, який отримано в результаті термохімічної обробки етанолу при підвищеному тиску. У третьому розділі наведено результати теоретичних та експериментальних досліджень ефективності процесів термохімічної обробки палива. З метою порівняння потенціалів вторинних енергоресурсів суднових теплових двигунів енергетичних установок різного складу розроблена багатовимірна класифікація схем енергетичних установок високотехнологічних суден і об’єктів нафтогазовидобування. Визначено критерії оцінки енергоефективності процесів термохімічної обробки палив та встановлено найбільш перспективні палива для термохімічної обробки шляхом утилізації вторинних енергоресурсів теплових двигунів. Визначено межі застосування існуючих підходів до оцінки ефективності процесів термохімічної обробки палив. Виявлені обмеження, які пов’язані з впливом основних параметрів процесу конверсії на доцільність застосування термохімічної обробки палив в залежності від їх властивостей. Наведено результати експериментального дослідження комплексного впливу температури, тиску та складу суміші на ефективність термохімічної обробки етанолу з визначенням витрат теплової та механічної потужностей при організації процесів обробки палива. Виявлено значний вплив витрат механічної енергії на ефективність термохімічної обробки палива. У четвертому розділі розроблена математична модель енергетичного модуля з термохімічною утилізацією вторинних енергоресурсів теплових двигунів. Обґрунтовано підходи до створення та надані алгоритми налаштування математичних моделей енергетичних модулів та структурно-функціональних блоків з метою оптимізації процесів термохімічних перетворень енергії. У п’ятому розділі наведені результати теоретичних досліджень параметрів суднових енергетичних модулів з використанням термохімічних технологій утилізації. Доведена ефективність використання на високотехнологічних суднах та морських об'єктах нафтогазовидобування газотурбінних та комбінованих енергетичних модулів з термохімічною обробкою базового палива та утилізацією теплоти відпрацьованих газів ГТД. Встановлено, що утилізація вторинних енергоресурсів шляхом термохімічної обробки вуглеводневих та спиртових палив забезпечує зменшення питомої витрати палива у порівнянні з традиційними схемами та підвищення ККД до 4 %. Підтверджено підвищення ефективності використання енергії палива на 5 6 % в пропульсивних комплексах сучасних та перспективних суден-газовозів шляхом використання термохімічного перетворення енергії в металогідридних утилізаційних установках. Доведено, що застосування запропонованих термохімічних технологій більш ніж в 1,5 рази зменшує викиди діоксиду вуглецю при експлуатації суднової енергетичної установки високотехнологічного судна або морського об'єкту нафтогазовидобування. У шостому розділі розроблено математичну модель низькоемісійної газотурбінної камери згоряння, що працює на продуктах термохімічної конверсії, та наведені результати дослідження характеристик робочого процесу при роботі на продуктах термохімічної конверсії попутного газу. Доведена можливість ефективного використання продуктів термохімічної конверсії попутного газу в якості основного палива. Встановлена стабільність процесу горіння в камері згоряння з попереднім частковим перемішуванням палива и окиснювача. Підтверджено, що викиди основних токсичних компонентів (NOx і CO) відповідають сучасним європейським стандартам на викиди газотурбінних двигунів. У сьомому розділі наведено результати реалізації комплексу запропонованих технічних рішень при проектуванні енергетичних установок високотехнологічних суден та морських об'єктів нафтогазовидобування, визначено перспективи подальшого застосування отриманих наукових і практичних положень. За результатами виконаних наукових досліджень розроблено концепцію підвищення ефективності суднових енергетичних установок високотехнологічних суден і морських об’єктів нафтогазовидобування шляхом термохімічної обробки вуглеводневих та спиртових палив за рахунок підводу теплоти відпрацьованих газів газотурбінних та комбінованих дизель-газотурбінних енергетичних установок, а також використанням потенціалу вторинних енергоресурсів малообертових дизельних двигунів термохімічним перетворенням енергії в утилізаційних металогідридних установках. Наукова новизна отриманих результатів полягає у наступному: 1. Вперше визначено діапазон ефективного застосування низки вуглеводневих та спиртових палив для термохімічної обробки шляхом утилізації вторинних енергоресурсів енергетичних установок, при цьому виявлено: а) потенціал вторинних енергоресурсів установок на базі газотурбінних двигунів забезпечує ефективну обробку метанолу та етанолу з максимальним приростом теплоти згоряння палива 18–22 %, а також помірну ефективність обробки природного газу, попутного газу та їх головних складових при максимальному прирості 8–12 %; б) потенціал вторинних енергоресурсів установок на базі чотирьохтактних дизельних двигунів забезпечує ефективну обробку метанолу та етанолу з приростом теплоти згоряння до 20–22 і 15–16 % відповідно; в) температурний потенціал скидної теплоти установок на базі двохтактних дизельних двигунів достатній для ефективних перетворень енергії в металогідридних утилізаційних установках. 2. Вперше доведено, що на відміну від існуючих суднових енергетичних установок без термохімічної обробки палива, термохімічна обробка вищевказаних спиртових та вуглеводневих палив за рахунок утилізації вторинних енергоресурсів енергетичних установок високотехнологічних суден приводить до покращення співвідношення величин викидів CO2 на одиницю транспортної роботи судна та, відповідно, до зменшення індексу EEDI на: 25–40 % для газовозів LNG з єдиною електроенергетичною установкою; на 30–42 % для газовозів LPG порівняно з енергокомплексами, які працюють на нафтових паливах, та на 22–24 % порівняно з енергокомплексами, які працюють на LPG; на 15–25 % для круїзних суден відносно енергокомплексів, які працюють на нафтових паливах, та на 10–15 % відносно енергокомплексів, які працюють на LNG; на 5–15 % для суден Ro-pax в залежності від особливостей судна, схемних рішень та характеристик енергетичної установки, компонентного складу палива, характеристик термохімічної обробки та робочих процесів теплових двигунів. 3. Вперше обґрунтовано ефективність термохімічної обробки палива при параметрах процесів, які відповідають параметрам робочих процесів енергетичних установок, при цьому встановлено, що утилізація вторинних енергоресурсів газотурбінних суднових енергетичних установок шляхом термохімічної обробки вуглеводневих та спиртових палив забезпечує збільшення ККД установки до 4 % відносно контактних газо-паротурбінних установок при умові, що при термохімічній обробці допустиме масове співвідношення витрат пара/паливо складає 6–7 для вуглеводневих палив та 0,6–0,9 для спиртових палив. 4. Вперше доведено, що поліпшення паливної економічності комбінованої дизель-газотурбінної енергетичної установки до 4 % забезпечується термохімічною обробкою палива шляхом утилізації теплоти відпрацьованих газів газотурбінного двигуна за умови проведення термохімічної обробки окремо для ГТД при високому тиску (відповідно до тиску підведення палива до ГТД 1,0–2,5 МПа) та окремо для ДВЗ при низькому тиску (0,6–0,7 МПа) з подальшим сумісним використанням продуктів обробки в якості палива в газотурбінному та дизельному(их) двигуні(ах). 5. Вперше визначено, що на відміну від існуючих підходів до організації ефективного спалювання синтез-газу в камерах згоряння ГТД, використання термохімічної утилізації теплоти відхідних газів дає змогу отримувати продукти термохімічної обробки стійкого складу незалежно від вмісту метану у базовому паливі та забезпечує стабільність процесу горіння в низькоемісійній газотурбінній камері згоряння з попереднім частковим перемішуванням палива з повітрям. 6. Отримав подальший розвиток метод тривимірного моделювання процесів горіння вуглеводневих та спиртових палив, на базі якого створена континуальна модель робочих процесів в низькоемісійних камерах згоряння ГТД, працюючих на продуктах термохімічної конверсії, яка дозволяє виявити особливості аеродинамічної структури реагуючих потоків в умовах турбулентної взаємодії, а також здійснити вибір раціональних геометричних параметрів для забезпечення сучасних екологічних показників енергетичних установок високотехнологічних суден та об’єктів нафтогазовидобування. 7. Вдосконалено підхід до створення багатофакторних параметричних моделей суднових енергетичних установок, які враховують обмеження допустимих значень параметрів та дозволяють оцінити вплив схемних рішень і параметрів процесів на показники ефективності енергетичних комплексів з утилізацією енергії скидної теплоти шляхом термохімічної обробки палива та термохімічним перетворенням енергії в металогідридних установках. 8. На основі об'єктно-орієнтованого підходу вдосконалено багаторівневу класифікацію структурних схем енергетичних установок високотехнологічних суден і морських об’єктів нафтогазовидобування, яка відрізняється комплексним описом їх складу та головних характеристик, що надало можливість оцінювати доцільність використання традиційних та інноваційних технологій. На основі отриманих наукових результатів сформульовано наукові положення: 1. Підвищення ефективності термохімічної утилізації вторинних енергоресурсів енергетичних установок високотехнологічних суден і морських об’єктів нафтогазовидобування досягається узгодженням параметрів робочих процесів термохімічної обробки палива та теплових двигунів і забезпечує зростання ККД установок до 4 %. 2. Термохімічна обробка вуглеводневих та спиртових палив з низькоемісійним спалюванням отриманих газоподібних продуктів та утилізацією вторинних енергоресурсів газотурбінних та комбінованих дизель-газотурбінних енергетичних установок, а також використання енергії вторинної теплоти малообертових дизельних двигунів в утилізаційних металогідридних установках забезпечує зменшення викидів діоксиду вуглецю на одиницю транспортної роботи високотехнологічних суден. 3. Комплексне використання термохімічної обробки палива та організація низькоемісійного процесу горіння в газотурбінній камері згоряння з попереднім частковим перемішуванням палива з повітрям забезпечують відповідність викидів основних токсичних компонентів енергетичних установок високотехнологічних суден і морських об’єктів нафтогазовидобування сучасним європейським стандартам. Наукове значення роботи полягає в розширенні уявлень про фізико-хімічні процеси термохімічної утилізації вторинних енергоресурсів, обробки палив та процесів горіння продуктів їх конверсії, що є науковим підґрунтям для реалізації концепції підвищення ефективності суднових енергетичних установок високотехнологічних суден і морських об’єктів нафтогазовидобування. Практичне значення отриманих результатів Обґрунтування діапазону ефективного застосування перспективних вуглеводневих та спиртових палив та отримані регресійні залежності, які описують закономірності впливу параметрів робочих процесів теплових двигунів на компонентний склад та енергетичні характеристики продуктів термохімічної обробки, дозволило розробити алгоритми та методики розрахунку, створити прикладне програмне забезпечення, яке апробоване при виконанні проєктних проробок енергетичного обладнання. Схемні рішення та практичні рекомендації з використання систем термохімічної утилізації в складі газотурбінних та комбінованих установок надали можливість розробити концептуальні проєкти газовозів LNG, LPG, круїзних лайнерів, а також суден Ro-pax, що задовольняють перспективним вимогам IMO з енергоефективності. Результати впровадження роботи Результати дисертаційного дослідження впроваджено при розробці проекту енергетичного комплексу потужністю 10-15 МВт з термохімічною обробкою попутного нафтового газу для морської платформи (ДП «Дослідно-проектний центр кораблебудування» державного концерну «Укроборонпром», м. Миколаїв); при розробці концептуальних проектів газовозів LNG, LPG, круїзних лайнерів, суден Ro-pax з низькоемісійними енергетичними установками («Zaliv Ship Design», «Сі-Джоб Миколаїв» та ДП «ПКБ Чорноморсуднопроєкт», м. Миколаїв); в технічній документації з модернізації енергетичного обладнання та питань адаптування термохімічних технологій утилізації до існуючого енергетичного обладнання (Херсонська верф «Smart Meritime Group», м. Херсон; ТОВ «Енерготехнологія», Миколаївська обл.); при проведенні досліджень характеристик суднових гібридних енергетичних установок з використанням технології SOFC-GT («Jiangsu University of Science and Techology», КНР); при проведенні досліджень характеристик газотурбінних енергетичних установок морського виконання («Georgian Veritas» LTD, Грузія), а також в навчальному процесі при підготовці здобувачів вищої освіти ступеня «Бакалавр» за спеціальністю 271 «Річковий та морський транспорт» в Національному університеті кораблебудування імені адмірала Макарова (м. Миколаїв), ступенів «Бакалавр» та «Магістр» за спеціальністю 141 «Електроенергетика, електротехніка та електромеханіка» в Кременчуцькому національному університеті імені Михайла Остроградського (м. Кременчуг), ступенів «Бакалавр» та «Магістр» за спеціальністю 144 «Теплоенергетика» в Вінницькому національному технічному університеті (м. Вінниця), ступенів «Бакалавр» та «Магістр» за спеціальністю 271 «Річковий та морський транспорт» в Національному університеті «Одеська Морська Академія» (м. Одеса) та Одеському національному морському університеті (м. Одеса). Впровадження результатів дисертаційної роботи підтверджується відповідними актами про використання результатів дослідження.uk_UA
dc.description.abstract1Cherednichenko O. C. Efficiency of Power Plants with Thermochemical Systems for Technology-Intensive Ships and Offshore Oil and Gas Production Facilities. – Manuscript. Dissertation for the Doctoral Degree of Technical Sciences, Specialty 05.05.03 – Engines and Power Plants (Technical sciences). – Admiral Makarov National University of Shipbuilding, Ministry of Education and Science of Ukraine, Mykolaiv, 2020. The dissertation is devoted to the solution of an important scientific issue of efficiency increasing of fuel resources use and reduction of toxic components emissions by rational organization of energy transformations in thermochemical systems of waste heat recovery of secondary energy sources in power plants of technology-intensive ships and offshore oil and gas production facilities. The need to comply with the requirements of the International Maritime Organization’s (IMO) legislation to improve energy efficiency determines the demand for practices aimed at adapting energy-efficiency technologies in ship power engineering by means of implementation of advanced heat engines and plants. It also estimates the achievable range of such engines and plants parameters with the development of scientifically sound promising design solutions supplying the increasing of fuel recourses efficiency use, minimizing emissions of CO2 and other harmful substances in the environment. The aim of the research is to increase the efficiency of power plants with thermochemical systems of waste heat recovery of secondary energy sources in power plants for technology-intensive ships and offshore oil and gas production facilities. The introduction of the dissertation presents substantiation of the topic relevance, the relation of the research with scientific programs and projects. The research object and subject are formulated along with the research aim, main objectives and methods. Reliability of the obtained results and conclusions is substantiated along with the scientific novelty and practical importance of the dissertation. The completeness of obtained results presentation is demonstrated in the list of publications and by the level of research approbation at conferences. In Chapter 1, the global energy consumption trends and rational use of traditional and alternative energy sources have been considered. It has been revealed the significant influence of the world fleet and oil and gas production floating objects on improvement of quality of human life. The legislative acts of the International Maritime Organization concerning ship energy efficiency have been analyzed; the prospects of thermochemical heat recovery technologies in ship power engineering have been noted; the research purpose has been substantiated and the statement of the main tasks has been carried out. In Chapter 2, the methodology and substantiated research methods have been shown. In solving problems of theoretical and experimental studies of processes in ship power plants with thermochemical heat recovery, the prospects of use of the object-oriented approaches have been identified. It is proposed to use a modular approach according to four hierarchical levels: the module as a whole, module subsystems, groups of equipment blocks of subsystems, structural and functional units simulating individual process units with a combination of units in the form of material, energy and heat flows. In Chapter 3, the results of theoretical and experimental researches of efficiency of thermochemical fuel treatment processes have been presented. In order to evaluate the potential of waste energy resources of marine heat engines using the thermochemical heat recovery technologies of promising fuels, a multidimensional classification of the schemes of marine power plants of high-tech facilities has been developed. The criteria for assessing the energy efficiency of thermochemical treatment processes of hydrocarbon fuels have been determined, and the most promising fuels for thermochemical treatment by means of waste energy resources recovery of heat engines have been identified. The application limits of the existing approaches to estimation of processes efficiency of thermochemical fuel treatment have been defined. The limitations have been identified, that are related to the influence of the main parameters of the conversion process on the feasibility of thermochemical treatment of fuels depending on their properties. The results of experimental research of aggregate impact of temperature, pressure and mix composition on efficiency of thermochemical processing of ethanol-based fuels with evaluation of thermal and mechanical power consumption at the processes organization of fuel treatment are resulted. A significant influence of mechanical energy consumption on the energy heat recovery factor, which was not taken into account in previous studies, has been revealed. In Chapter 4, the conceptual mathematical model of the power module with thermochemical heat recovery of waste energy resources of heat engines has been given. For the purpose of processes optimization of thermochemical energy conversion, approaches to algorithms development to adjust of mathematical models of structural and functional blocks are substantiated. In Chapter 5, the results of theoretical researches of parameters of ship power modules using thermochemical technologies of heat recovery have been demonstrated. For gas turbine and combined energy modules with thermochemical treatment of the base fuel and heat recovery of exhaust gases of gas turbine engines on high-tech vessels and floating objects of oil and gas production, the efficiency of their use has been proved. It has been established that heat recovery of waste energy resources by thermochemical eatment of hydrocarbon and alcohol fuels reduces the specific fuel consumption compared to traditional schemes. Rising of fuel energy efficiency by 4% in propulsive complexes of modern and promising gas carriers by means of thermochemical energy conversion in metal hydride heat recovery plants has been confirmed. It has been proved that the application of the proposed thermochemical technologies reduces carbon dioxide emissions by more than 1.5 times during operation of a ship power plant of a high-tech vessel or a floating oil and gas production facility. In Chapter 6, the mathematical model of the low-emission gas turbine combustion chamber operating on thermochemical conversion products has been developed, and the research results of operating process characteristics at work on thermochemical conversion products of an associated gas have been shown. The possibility of efficient use of thermochemical conversion products of an associated gas as the main fuel has been proved. The stability of the combustion process in the combustion chamber with preliminary partial mixing of fuel and oxidant has been revealed. It has been confirmed that emissions of major toxic components (NOx and CO) meet the modern European standards for gas turbine engine emissions. In Chapter 7, the results of realization of a complex of the offered technical decisions at power installations design of high-tech vessels and floating objects of oil and gas production have been resulted, prospects of further application of the received scientific and practical positions have been defined. As a result of the performed scientific researches, the concept of increase of efficiency of ship power plants of technology-intensive ships and offshore oil and gas production facilities is developed. This concept satisfies IMO’s perspective requirements on energy efficiency that is expected to come into force since 2025. It is realized by thermochemical treatment of hydrocarbon and alcohol fuels by heat supplying of exhaust gases of gas turbine and combined diesel-gas turbine power plants, as well as by using the potential of secondary energy resources of low-speed diesel engines by means of thermochemical energy conversion in recovery metal-hydride plants. Efficiency improving of thermochemical recovery of secondary energy resources of power plants for technology-intensive ships and offshore oil and gas production facilities is achieved by agreeing on the parameters of operating processes of thermochemical fuel treatment along with heat engines and increases the efficiency of power plants up to 3 %. Thermochemical treatment of hydrocarbon and alcohol fuels with low-emission combustion of gaseous products and utilization of secondary energy resources of gas turbine and combined diesel-gas turbine power plants along with the use of waste heat energy of low-speed diesel engines in recovery metal hydride plants provides reduction of carbon dioxide emissions per unit of transport work of technology-intensive ships. The integrated use of thermochemical fuel treatment and the organization of low-emission combustion in a gas turbine combustion chamber with preliminary partial mixing of fuel with air ensure compliance of major toxic components emissions of power plants of technology-intensive ships and offshore oil and gas production facilities with the modern European standards. The scientific and practical significance of the dissertation is to expand ideas about the physicochemical processes of thermochemical recuperation of secondary energy resources, fuel treatment and combustion processes of their conversion products, which is the scientific basis for implementing the concept of technology-intensive ships and offshore oil and gas production facilities corresponding to the global rate according to level of economy and environmental friendliness. Substantiation of effective use range of a number of hydrocarbon and alcohol fuels and the obtained regression dependences, describing the patterns of influence of heat engine operating process parameters on the component composition and energy characteristics of thermochemical products, has allowed to increase the design efficiency of ship power plants operating on various fuels. Design solutions and practical recommendations for the application of thermochemical recovery systems in advanced gas turbine and combined plants have provided an opportunity to develop conceptual designs for LNG and LPG carriers, cruise ships and Ro-pax, which meet the promising IMO’s energy efficiency requirements. The results of the dissertation are used in the practice of forming technical tasks, technical proposals in implementing of design studies of power equipment and in the educational process in the training of bachelor and master students.uk_UA
dc.identifier.urihttps://eir.nuos.edu.ua/handle/123456789/4291
dc.language.isoukuk_UA
dc.relation.ispartofseries621.4:629.5uk_UA
dc.subjectсуднова енергетична установкаuk_UA
dc.subjectконверсія паливаuk_UA
dc.subjectтермохімічна утилізація теплотиuk_UA
dc.subjectгазотурбінний двигунuk_UA
dc.subjectсинтез-газuk_UA
dc.subject05.05.03 – "Двигуни та енергетичні установки"uk_UA
dc.subjectship power plantuk_UA
dc.subjectfuel conversionuk_UA
dc.subjectthermochemical heat recoveryuk_UA
dc.subjectgas turbine engineuk_UA
dc.subjectsyngasuk_UA
dc.titleЕфективність енергетичних установок з термохімічними системами для високотехнологічних суден і морських об'єктів нафтогазовидобуванняuk_UA
dc.title1Efficiency of Power Plants with Thermochemical Systems for Technology-Intensive Ships and Offshore Oil and Gas Production Facilitiesuk_UA
dc.title22020
dc.typeOtheruk_UA

Файли

Контейнер файлів
Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
dis Cherednichenko.pdf
Розмір:
16.41 MB
Формат:
Adobe Portable Document Format
Опис:
дисертація
Ліцензійна угода
Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
7.05 KB
Формат:
Item-specific license agreed upon to submission
Опис:

Зібрання